Yudi Xie (谢禹)

PhD student at MIT BCS. I build deep learning and probabilistic models to understand the brain and mind.

yudi_xie_pic.jpg

MIT building 46

43 Vassar St

Cambridge, MA 02139

My name is Yudi Xie, and I am currently pursuing my Ph.D. in Prof. James DiCarlo’s lab in the Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology (MIT). Before embarking on this journey at MIT, I obtained my Bachelor’s degree in Physics from the University of Science and Technology of China (USTC).

My main research interest is at the intersection of computational neuroscience, cognitive science, and machine learning. Through the lens of machine learning, I utilize deep learning and probabilistic models to develop a computational framework for understanding the intricacies of the brain and mind. These computational models are then tested against empirical behavioral and neural data.

During my undergraduate years, I had the exceptional opportunity to do research in Prof. Naoshige Uchida’s lab at Harvard University. There, I used computational tools to investigate the influence of dopamine on novelty-seeking behaviors in mice. My interest in computational neuroscience research was initially sparked through my experience in Prof. Quan Wen’s lab at USTC, where I investigated the movement decisions of C. elegans.

latest posts

selected publications

  1. Vision CNNs trained to estimate spatial latents learned similar ventral-stream-aligned representations
    Yudi Xie, Weichen Huang, Esther Alter, Jeremy Schwartz, Joshua B. Tenenbaum, and James J. DiCarlo
    2024
  2. Dopamine dynamics are dispensable for movement but promote reward responses
    Xintong Cai, Changliang Liu, Iku Tsutsui-Kimura, Joon-Hyuk Lee, Chong Guo, Aditi Banerjee, Jinoh Lee, Ryunosuke Amo, Yudi Xie, Tommaso Patriarchi, Yulong Li, Mitsuko Watabe-Uchida, and 2 more authors
    Nature, Oct 2024
  3. Learning only a handful of latent variables produces neural-aligned CNN models of the ventral stream
    Yudi Xie, Esther Alter, Jeremy Schwartz, and James J DiCarlo
    Oct 2024
  4. Natural constraints explain working memory capacity limitations in sensory-cognitive models
    Yudi Xie, Yu Duan, Aohua Cheng, Pengcen Jiang, Christopher J Cueva, and Guangyu Robert Yang
    bioRxiv, Oct 2023
  5. CCN
    Human-like capacity limitation in multi-system models of working memory
    Yudi Xie, Yu Duan, Aohua Cheng, Pengcen Jiang, Christopher Cueva, and Guangyu Robert Yang
    Oct 2022
  6. Striatal dopamine explains novelty-induced behavioral dynamics and individual variability in threat prediction
    Korleki Akiti, Iku Tsutsui-Kimura, Yudi Xie, Alexander Mathis, Jeffrey E Markowitz, Rockwell Anyoha, Sandeep Robert Datta, Mackenzie Weygandt Mathis, Naoshige Uchida, and Mitsuko Watabe-Uchida
    Neuron, Oct 2022
  7. Flexible motor sequence generation during stereotyped escape responses
    Yuan Wang, Xiaoqian Zhang, Qi Xin, Wesley Hung, Jeremy Florman, Jing Huo, Tianqi Xu, Yudi Xie, Mark J Alkema, Mei Zhen, and Quan Wen
    Elife, Oct 2020